		٦
I	WORKSHEET #3	
		J

Name:	Date:	Period:	Seat #:
Show all work and/or explain using chemistry principles	8		
#1: What is the vapor pressure of an aqueous solution to 25.756 mmHg at 25 °C. [23.18 mmHg]	that has a solute m	ole fraction of 0.1000?	The vapor pressure of water is
#2: The vapor pressure of an aqueous solution is found solution? The vapor pressure of water is 25.756 mm H ₂			mole fraction of solute in this
#3 : How many grams of nonvolatile compound B (mol produce a solution with a vapor pressure of 23.756 torr Comment: this is a completely ridiculous amount to dissolve in 250.0 g o	? The vapor press	are of water at this tem	perature is 42.362 torr. [1063 g -
#4: At 29.6 °C, pure water has a vapor pressure of 31.1	l torr. A solution is	s prepared by adding 80	5.8 g of "Y", a nonvolatile non-
electrolyte to 350. g of water. The vapor pressure of the	e resulting solutior	n is 28.6 torr. Calculate	the molar mass of Y. [51.1 g/mol]
#5: The vapor pressure of pure water is 23.8 mmHg at	25.0 °C. What is the	he vapor pressure of 2	50 molal C6H12O6 [22.8 mmHg]
#6: How many grams of testosterone, C ₁₉ H ₂₈ O ₂ , a nonvof benzene to reduce the vapor pressure to 71.41 mm H mm Hg at 25.0 °C.) [17.4 g]			

#7: At 25.0 °C, the vapor pressure of benzene (C₆H₆) is 0.1252 atm. When 10.00 g of an unknown non-volatile substance is dissolved in 100.0 g of benzene, the vapor pressure of the solution at 25.0 °C is 0.1199 atm. Calculate the mole fraction of solute in the solution, assuming no dissociation by the solute. [0.04233]

#8: What is the vapor pressure at 25.0 °C of a solution composed of 42.71 g of naphthalene (a non-volatile compound, MW = 128 g/mol) and 40.65 g of ethanol (MW = 46.02 g/mol). (The vapor pressure of pure ethanol at 25.0 °C is 96 torr.) [70. Torr]

#9: A nonvolatile organic compound Z was used to make up a solution. Solution A contains 5.00 g of Z dissolved in 100. g of water and has a vapor pressure of 754.5 mmHg at the normal boiling point of water. Calculate the molar mass of Z. [124 g/mol]

#10: What is the molality of an aqueous solution of urea, CO(NH₂)₂, if the vapor pressure above the solution is 22.83 mmHg at 25 °C? Assume that urea is non-volatile. The vapor pressure of pure water is 23.77 mmHg at 25 °C [2.31 m]

#11: Calculate the mass of propylene glycol (C₃H₈O₂) that must be added to 500. grams of water to reduce the vapor pressure by 4.75 mmHg at 40.0 $^{\circ}$ C.

#12: What is the vapor pressure of water above a solution in which 32.5 g of glycerin (C₃H₈O₃) are dissolved in 125. g of water at 343 K? The vapor pressure of pure water at 343 K is 233.7 torr [222.4 torr]

#13: A solution is prepared by dissolving 396 g of sucrose in 624 g of water at 30.0 °C. What is the vapor pressure of this solution? (The vapor pressure of water is 31.82 mmHg at 30.0 °C.) [30.8 mmHg]

#14: Calculate the vapor pressure of a solution made by dissolving 21.80 g of glucose (molar mass = 180.155 g/mol) in 460.0 g of H₂O at 30.0 °C. (The vapor pressure of the pure solvent is 31.82 mmHg at 30.0 °C.) [31.67 mmHg]

#15: The vapor pressure of carbon tetrachloride (CCl₄) at 50.0 °C is 0.437 atm. When 7.42 g of a pure nonvolatile substance is dissolved in 100.0 g of carbon tetrachloride, the vapor pressure of the solution is 0.411 atm. Calculate the molar mass of the solute. [180. g/mol]

#16: At 27.0 °C, the vapor pressure of pure water is 23.76 mmHg and that of an aqueous solution of urea is 22.97 mmHg. Calculate the molality of urea in this solution. [0.0180 kg]