Name:
Date:
Period:
Seat \#:
Show all work and/or explain using chemistry principles
\#1: What is the vapor pressure of an aqueous solution that has a solute mole fraction of 0.1000 ? The vapor pressure of water is 25.756 mmHg at $25^{\circ} \mathrm{C}$. [23.18 mmHg]
\#2: The vapor pressure of an aqueous solution is found to be 24.90 mmHg at $25^{\circ} \mathrm{C}$. What is the mole fraction of solute in this solution? The vapor pressure of water is 25.756 mm Hg at $25^{\circ} \mathrm{C}$. [0.03324]
\#3: How many grams of nonvolatile compound B (molar mass $=97.80 \mathrm{~g} / \mathrm{mol}$) would need to be added to 250.0 g of water to produce a solution with a vapor pressure of 23.756 torr? The vapor pressure of water at this temperature is 42.362 torr. [1063 g Comment: this is a completely ridiculous amount to dissolve in 250.0 g of water, but that's not the point. The point is to solve the problem.]
\#4: At $29.6^{\circ} \mathrm{C}$, pure water has a vapor pressure of 31.1 torr. A solution is prepared by adding 86.8 g of " Y ", a nonvolatile nonelectrolyte to 350 g of water. The vapor pressure of the resulting solution is 28.6 torr. Calculate the molar mass of $\mathrm{Y} .[51.1 \mathrm{~g} / \mathrm{mol}]$
\#5: The vapor pressure of pure water is 23.8 mmHg at $25.0^{\circ} \mathrm{C}$. What is the vapor pressure of $2.50 \mathrm{molal} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}[22.8 \mathrm{mmHg}]$
\#6: How many grams of testosterone, $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$, a nonvolatile, nonelectrolyte ($\mathrm{MW}=288.4 \mathrm{~g} / \mathrm{mol}$), must be added to 207.8 grams of benzene to reduce the vapor pressure to 71.41 mm Hg ? (Benzene $=\mathrm{C}_{6} \mathrm{H}_{6}=78.12 \mathrm{~g} / \mathrm{mol}$. The vapor pressure of benzene is 73.03 mm Hg at $25.0^{\circ} \mathrm{C}$.) $[17.4 \mathrm{~g}]$
\#7: At $25.0^{\circ} \mathrm{C}$, the vapor pressure of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is 0.1252 atm . When 10.00 g of an unknown non-volatile substance is dissolved in 100.0 g of benzene, the vapor pressure of the solution at $25.0^{\circ} \mathrm{C}$ is 0.1199 atm . Calculate the mole fraction of solute in the solution, assuming no dissociation by the solute. [0.04233]
\#8: What is the vapor pressure at $25.0^{\circ} \mathrm{C}$ of a solution composed of 42.71 g of naphthalene (a non-volatile compound, MW $=128$ $\mathrm{g} / \mathrm{mol}$) and 40.65 g of ethanol ($\mathrm{MW}=46.02 \mathrm{~g} / \mathrm{mol}$). (The vapor pressure of pure ethanol at $25.0^{\circ} \mathrm{C}$ is 96 torr.) [70. Torr]
\#9: A nonvolatile organic compound Z was used to make up a solution. Solution A contains 5.00 g of Z dissolved in 100.g of water and has a vapor pressure of 754.5 mmHg at the normal boiling point of water. Calculate the molar mass of Z . [124 g/mol]
\#10: What is the molality of an aqueous solution of urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$, if the vapor pressure above the solution is 22.83 mmHg at 25 ${ }^{\circ} \mathrm{C}$? Assume that urea is non-volatile. The vapor pressure of pure water is 23.77 mmHg at $25^{\circ} \mathrm{C}$ [2.31 m]
\#11: Calculate the mass of propylene glycol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ that must be added to 500 . grams of water to reduce the vapor pressure by 4.75 mmHg at $40.0^{\circ} \mathrm{C}$.
\#12: What is the vapor pressure of water above a solution in which 32.5 g of glycerin $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ are dissolved in 125. g of water at 343 K ? The vapor pressure of pure water at 343 K is 233.7 torr [222.4 torr]
\#13: A solution is prepared by dissolving 396 g of sucrose in 624 g of water at $30.0^{\circ} \mathrm{C}$. What is the vapor pressure of this solution? (The vapor pressure of water is 31.82 mmHg at $30.0^{\circ} \mathrm{C}$.)
[30.8 mmHg]
\#14: Calculate the vapor pressure of a solution made by dissolving 21.80 g of glucose (molar mass $=180.155 \mathrm{~g} / \mathrm{mol}$) in 460.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $30.0^{\circ} \mathrm{C}$. (The vapor pressure of the pure solvent is 31.82 mmHg at $30.0^{\circ} \mathrm{C}$.) [31.67 mmHg]
\#15: The vapor pressure of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ at $50.0^{\circ} \mathrm{C}$ is 0.437 atm . When 7.42 g of a pure nonvolatile substance is dissolved in 100.0 g of carbon tetrachloride, the vapor pressure of the solution is 0.411 atm . Calculate the molar mass of the solute. [180. g/mol]
\#16: At $27.0^{\circ} \mathrm{C}$, the vapor pressure of pure water is 23.76 mmHg and that of an aqueous solution of urea is 22.97 mmHg . Calculate the molality of urea in this solution. [0.0180 kg]

